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Abstract
We prove several results concerning the numbers of n-edge self-avoiding
polygons and walks in the lattice Zd which had previously been conjectured
on the basis of numerical results. If the number of n-edge self-avoiding
polygons (walks) with k contacts is pn(k) (cn(k)) then we prove that κ0 ≡
limn→∞ n−1 logpn(k) = limn→∞ n−1 log cn(k) exists for all fixed k and
is independent of k. For polygons in Z2, we prove that there exist two
positive functions B1 and B2, independent of n but depending on k, such that
B1n

kpn(0) � pn(k) � B2n
kpn(0) for fixed k and n large. Also, provided the

limit exists, we prove that 0 < limn→∞ 〈k〉n/n < 1.
In addition, we consider the number of polygons with a density of contacts,

i.e. k = αn, and show that the corresponding connective constant, κ(α), exists
and is a concave function of α. For d = 2, we prove that limα→0+ κ(α) = κ0

and the right derivative of κ(α) at α = 0 is infinite.

PACS number: 0550

1. Introduction

Self-avoiding walks are the standard model for the configurational properties of polymers in
good solvents [1]. Solvent quality can be modelled by incorporating a short-range vertex–
vertex interaction into the self-avoiding walk model and this model has been used to study the
collapse of linear polymers from an expanded open coil state to a compact state. Although there
is a substantial amount of numerical work on this problem, including Monte Carlo methods,
exact enumeration and series analysis, and transfer-matrix methods, there is no proof of the
existence of a collapse transition in the model. That is, there is no proof that the limiting free
energy has a singularity.

For a self-avoiding walk on a hypercubic lattice Zd , label the vertices i = 0, 1, 2, . . . , n
and write the coordinates of the ith vertex as ri . Then if two vertices i and j , |i − j | > 1,
are such that |ri − rj | = 1 then these vertices form a contact. Let cn(k) be the number of
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self-avoiding walks with n edges and k contacts, where two walks are considered the same if
they can be superimposed by translation. Define the partition function

Zn(β) =
∑
k

cn(k)e
βk. (1.1)

One expects that the limit

lim
n→∞ n−1 logZn(β) ≡ F(β) < ∞ (1.2)

will exist and F(β) will be singular at some β = βc corresponding to the location of the
collapse transition. The existence of the limit has been proved only for β � 0 [2–4]. One
possible route for proving that the limit in equation (1.2) exists for β > 0, and investigating
the properties of F(β), might be to understand better the properties of cn(k).

Recently, Douglas and Ishinabe [5] and Douglas et al [6] have used a mixture of exact
enumeration and Monte Carlo methods to investigate the properties of cn(k) on Zd . Their
evidence suggests that:

(a) the limits limn→∞ n−1 log cn(k) exist for each fixed value of k, and they are equal to a real
number κ0 > 0, independent of k;

(b) cn(k) ∼ Akn
kcn(0);

(c) there exists a constant a > 0 such that the average number of contacts for self-
avoiding walks of length n is given by 〈k〉n ∼ an. Note that if this limit exists,

limn→∞ n−1 ∂ logZn(β)

∂β

∣∣∣
β=0

= a.

In this paper we prove some results relevant to items (a)–(c) above. In fact, most of our
results will be for self-avoiding polygons with k contacts, though one would expect similar
behaviour for walks and polygons. The advantage of focusing on self-avoiding polygons is
that concatenation arguments have been used to prove that the limiting free energy analogous
to equation (1.2)

lim
n→∞ n−1 logZ0

n(β) ≡ F0(β) < ∞ (1.3)

exists and is a convex function of β [2,3]. Here Z0
n(β) is the partition function for self-avoiding

polygons, i.e.

Z0
n(β) =

∑
k

pn(k)e
βk (1.4)

where pn(k) is the number of self-avoiding polygons with n edges and k contacts. In fact,
it is known that F(β) = F0(β) for β � 0 [3] and this is believed [3, 4] to be true for all
finite β though no proof exists for β > 0. In this paper, methods previously developed
for studying Zn(β) and Z0

n(β) are modified for studying cn(0) and pn(0), the number of
neighbour-avoiding walks and polygons, respectively. From these results, we prove pattern
theorems for neighbour-avoiding walks and polygons for arbitrary dimensions and prove that
limn→∞ n−1 log cn(k) = limn→∞ n−1 logpn(k) = κ0 exists and is independent of k for fixed
k, which is (a), above. For polygons on the square lattice (d = 2) we establish a bound of the
form pn(k) � Ak

(
αn

k

)
pn(0) by developing an algorithm for removing contacts from a polygon.

This, combined with the pattern theorem results, allows us to prove for d = 2 that

lim
n→∞

log[pn(k)/pn(0)]

log n
= k (1.5)

which establishes the nk term in the analogue of (b). Related to (c), provided that F0(β) is
differentiable at β = 0 we show for d = 2 that 〈k〉n ∼ an for polygons, with 0 < a < 1.
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If the derivative does not exist we prove a slightly weaker result. Other consequences of the
d = 2 results are that limβ→−∞ F0(β) = κ0 and that for polygons with k = o(n) contacts
limn→∞;k=o(n) n

−1 logpn(k) = κ0. The results related to (a) and (b) are presented in section 2,
those related to (c) are presented in section 3, and in section 4 results about polygons with a
fixed density of contacts are presented.

2. Walks and polygons with a fixed number of contacts

An n-step self-avoiding walk (or n-SAW) beginning at a lattice point r0 consists of an (n + 1)-
tuple of distinct lattice points (r0, r1, . . . , rn), where ri and ri+1 are adjacent in the lattice, and
n steps (directed edges) joining the ith to the (i + 1)th lattice points (vertices), 0 � i < n.
Let cn be the number of distinct n-SAWs on Zd where two n-SAWs are distinct if they cannot
be superimposed by translation. An n-step self-avoiding circuit (n-SAC) is an n − 1 step
self-avoiding walk (SAW) whose first and last vertices are unit distance apart, and are joined
by a step going from the nth to the zeroth vertex. Any cyclic permutation of the vertices of
an n-SAC is also an n-SAC. So too is the reverse permutation and all cyclic permutations
of this reverse permutation. The resulting set of 2n n-SACs that originate from any given
n-SAC can be regarded as a single geometrical entity, which we call an n-edge self-avoiding
polygon (or n-SAP). Two n-SAPs are equivalent if one is a translate of the other. We write pn

for the number of inequivalent n-SAPs and pn(k) for the number of n-SAPs with k contacts.
Hammersley [7] showed (see also [1]) that

0 < lim
n→∞ n−1 log cn = lim

n→∞ n−1 logpn ≡ κ < log(2d − 1) (2.1)

where the second limit is taken through even values of n, so that the numbers of walks and
polygons increase exponentially with their length, at the same exponential rate.

A neighbour-avoiding walk is a self-avoiding walk with no contacts so that the number of
n-step neighbour-avoiding walks is given by Cn = cn(0). Similarly, the number of neighbour-
avoiding polygons is Pn = pn(0). We first prove a lemma about Pn and Cn which shows that
the limit in (a) exists for k = 0. The arguments used are analogous to those used in [1] to prove
equation (2.1). However, the concatenation needed must be modified to take into account the
fact that no contacts can be formed.

Lemma 1. There exists a positive constant κ0 such that

lim
n→∞ n−1 logCn = lim

n→∞ n−1 logPn ≡ κ0 < κ. (2.2)

Proof. First note that Cn � dn, which we obtain by considering walks which can only go in the
positive coordinate directions. Then, since any neighbour-avoiding walk can be decomposed
into a pair of neighbour-avoiding walks, we have the inequality

Cn+m � CnCm. (2.3)

Similarly, a pair of neighbour-avoiding polygons can be concatenated to form a neighbour-
avoiding polygon (the details of this concatenation are given below) so that

PnPm � Pn+m+24. (2.4)

Standard subadditivity arguments [8–10] can be used to show that the required limits each exist
and the arguments which lead to theorem 3.2.4 and corollary 3.2.5 of Madras and Slade [1]
can be adapted to prove that the limits are equal. The final inequality in equation (2.2) follows
from a pattern theorem argument for the class of all self-avoiding walks [11], since all except
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exponentially few sufficiently long self-avoiding walks contain the pattern u1u2ū1 which
contains a contact. Here ui denotes the ith unit vector in Zd and ūi = −ui . A sequence
of unit vectors should be viewed as a sequence of steps in a self-avoiding walk.

The details of the concatenation of polygons needed for the above argument are given
next. We suppose we have two neighbour-avoiding polygons, P1 and P2, and define the top
vertex of P1 to be vt and the bottom vertex of P2 to be vb (the top and bottom vertex are
defined, respectively, as the last and first vertex of the polygon in a lexicographic ordering
of the polygon’s vertices according to their coordinates). Let V (P1) and V (P2) represent the
vertex sets of P1 and P2, respectively, and suppose n = |V (P1)| and m = |V (P2)|. Fix the
unique integer pair i1, j1 such that 1 � i1 < j1 � d and vt − ui1 , vt − uj1 ∈ V (P1) and the
unique integer pair i2, j2 such that 1 � i2 < j2 � d and vb + ui2 , vb + uj2 ∈ V (P2).

If d = 2, then i1 = 1, j1 = 2, and vt − 2u2 ∈ V (P1) and similarly i2 = 1, j2 = 2, and
vb + 2u2 ∈ V (P2). In this case, translate P2 so that vb = vt − 2u2 + 2u1, add the two edges
between vt and vt + 2u1, and the two edges between vt − 2u2 and vb, and then delete the two
edges between vt and vt − 2u2, and the two edges between vb and vb + 2u2. The result is a
new neighbour-avoiding polygon with n + m edges. Hence for d = 2,

PnPm � Pn+m. (2.5)

Note also that if instead we concatenate P1 and P2 by first translating P2 so that vb =
vt − 2u2 + (2 + k)u1, then adding the (2 + k) edges between vt and vt + (2 + k)u1, and
the (2 + k) edges between vt − 2u2 and vb, and finally deleting the two edges between vt and
vt − 2u2, and the two edges between vb and vb + 2u2, the result is a new neighbour-avoiding
polygon with n + m + 2k edges.

If d > 2, we convert, by a suitable concatenation argument, P1 and P2 into two new
polygons P̃1 and P̃2 with no contacts such that for P̃1, i1 = 1, j1 = 2, and vt − 2u2 ∈ V (P̃1),
and for P̃2, i2 = 1, j2 = 2, and vb + 2u2 ∈ V (P̃2). Then the concatenation just described
for d = 2 can again be used to concatenate P̃1 and P̃2. The suitable concatenation argument
needed to convert P1 to P̃1 is described next; the argument for converting P2 to P̃2 is essentially
the same, except with vt replaced by vb, i1, j1 replaced by i2, j2 and with minus signs replaced
by plus signs as appropriate.

The appropriate concatenation to convert P1 to P̃1 depends on the value of i1. This results
initially in three cases: i1 > 2, i1 = 2, i1 = 1.

For i1 > 2, add two edges from vt − ui1 to vt − ui1 + 2u1, one edge from vt − ui1 + 2u1

to vt − ui1 + 2u1 − u2, one edge from vt − ui1 + 2u1 − u2 to vt + 2u1 − u2, one edge from
vt + 2u1 − u2 to vt + 2u1 − 2u2, and two edges from vt + 2u1 − 2u2 to vt + 4u1 − 2u2. Then
add three edges from vt − uj1 to vt − uj1 + 3u1, one edge from vt − uj1 + 3u1 to vt + 3u1, one
edge from vt + 3u1 to vt + 4u1, and two edges from vt + 4u1 − 2u2 to vt + 4u1. Delete one
edge from vt to vt − ui1 and one edge from vt to vt − uj1 . If P1 had n edges to begin with then
the resulting P̃1 has n + 12 edges.

For i1 = 2, add two edges from vt − u2 to vt − u2 + 2u1, one edge from vt − u2 + 2u1 to
vt − 2u2 + 2u1 and four edges from vt − 2u2 + 2u1 to vt − 2u2 + 6u1. Then add three edges
from vt − uj1 to vt − uj1 + 3u1, one edge from vt − uj1 + 3u1 to vt + 3u1, three edges from
vt + 3u1 to vt + 6u1, and two edges from vt + 6u1 − 2u2 to vt + 6u1. Delete one edge from vt

to vt − u2 and one edge from vt to vt − uj1 . If P1 had n edges to begin with then the resulting
P̃1 has n + 12 edges.

For i1 = 1, there exists a unique δ ∈ {−1, 1} and unique j ∈ {1, 2, . . . , d} such that
vt − uj1 + δuj ∈ V (P1) with δuj �= −uj1 , u1 and if δ = 1, j > j1. Let i ′1 = min{j1, j}. Here
we obtain two subcases: i ′1 > 2 and i ′1 = 2.
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For i1 = 1 and i ′1 > 2, add two edges from vt −uj1 +δuj to vt −uj1 +δuj +2u1, two edges
from vt −uj1 +δuj +2u1 to vt −uj1 +δuj +2u1 −2u2, one edge from vt −uj1 +δuj +2u1 −2u2

to vt − uj1 + 2u1 − 2u2, one edge from vt − uj1 + 2u1 − 2u2 to vt − uj1 + 3u1 − 2u2, one edge
from vt −uj1 + 3u1 −2u2 to vt + 3u1 −2u2, and one edge from vt + 3u1 −2u2 to vt + 4u1 −2u2.
Then add four edges from vt to vt + 4u1 and two edges from vt + 4u1 − 2u2 to vt + 4u1. Delete
one edge from vt to vt − uj1 and one edge from vt − uj1 to vt − uj1 + δuj . If P1 had n edges
to begin with then the resulting P̃1 has n + 12 edges.

For i1 = 1 and i ′1 = 2, then either j = j1 = 2 or j �= j1. For i1 = 1, i ′1 = 2 and
j = j1 = 2, P1 is already in the prescribed form. For i1 = 1, i ′1 = 2 and j �= j1, define
j ′ and δ′ such that vt − u2 + δ′uj ′ = vt − uj1 + δuj . Add two edges from vt − u2 + δ′uj ′ to
vt − u2 + δ′uj ′ + 2u1, one edge from vt − u2 + δ′uj ′ + 2u1 to vt − 2u2 + δ′uj ′ + 2u1, two edges
from vt − 2u2 + δ′uj ′ + 2u1 to vt − 2u2 + δ′uj ′ + 4u1, one edge from vt − 2u2 + δ′uj ′ + 4u1

to vt − 2u2 + 4u1, and one edge from vt + 4u1 − 2u2 to vt + 5u1 − 2u2. Then add five edges
from vt to vt + 5u1 and two edges from vt + 5u1 − 2u2 to vt + 5u1. Delete one edge from vt

to vt − uj1 and one edge from vt − uj1 to vt − uj1 + δuj . If P1 had n edges to begin with then
the resulting P̃1 has n + 12 edges.

In all the above cases the resulting P̃1 has at most n+12 edges and similarly the resulting P̃2

will have at mostm+12 edges. Hence for all d � 2, we can always obtain a neighbour-avoiding
polygon with n + m + 24 edges. �

Recall that any n-step walk in Zd is represented by an n-tuple (r0, r1, . . . , rn). For
i = 0, . . . , n, denote the coordinates of ri by (xi, yi, . . . , zi). We say that an n-edge neighbour-
avoiding walk is x-unfolded if x0 < xi < xn for all i �= 0, n. We write Bn for the number
of n-edge x-unfolded neighbour-avoiding walks. Since every x-unfolded neighbour-avoiding
walk is a neighbour-avoiding walk we have Bn � Cn. Every neighbour-avoiding walk can be
converted into an x-unfolded neighbour-avoiding walk by successive reflections of subwalks
in left-most and right-most planes (see Hammersley and Welsh [12] for details). This operation
does not define a bijection but an argument similar to that given by Hammersley and Welsh [12]
establishes that

Cn � BneO(
√
n). (2.6)

These two inequalities show that

lim
n→∞ n−1 logBn = κ0. (2.7)

The importance of this result is that the numbers of walks and unfolded walks are the same to
exponential order, and it is easier to work with these unfolded walks. Define the generating
function B(z) = ∑

n>0 Bnz
n. Equation (2.7) shows that B(z) converges when z < z0 = e−κ0

and diverges when z > z0. An argument similar to that used by Kesten [11] in the proof of his
theorem 5 shows that B(z) also diverges at z = z0.

An x-unfolded walk has a cutting plane x = a, a ∈ Z, if exactly one vertex of the walk is
in the plane x = a and if subdividing the walk at this vertex yields two x-unfolded subwalks.
An x-unfolded walk is prime if it does not contain a cutting plane.

We next prove a pattern theorem for neighbour-avoiding walks. Let W be a prime pattern,
i.e. a fixed x-unfolded neighbour-avoiding walk which is prime. Let Cn(W̄ ) be the number of
n-step neighbour-avoiding walks in which a translate of W never occurs as a subwalk. The
existence of the limit limn→∞ n−1 logCn(W̄ ) follows by a standard concatenation argument
upon noticing that subdividing any walk not containing W cannot create W in either of the
subwalks.
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Theorem 1. For W a prime pattern, Cn(W̄ ) satisfies the inequality

lim
n→∞ n−1 logCn(W̄ ) < κ0. (2.8)

Proof. The method of proof used here is based on an unpublished proof of the pattern theorem
for self-avoiding walks due to Hammersley [13].

We write Qn for the number of n-edge prime walks. An x-unfolded walk can be
decomposed into its prime components by successive cuts at the cutting planes x = a1,
x = a2, . . . with a1 < a2 < · · · . By cutting at the first possible cutting plane we obtain the
generalized renewal equation

Bn = Qn +
∑
k

BkQn−k. (2.9)

Defining the generating function

Q(z) =
∑
n>0

Qnz
n (2.10)

we can obtain an equation connecting Q(z) and B(z) by multiplying both sides of (2.9) by zn

and summing over n. This gives

B(z) = Q(z)

1 − Q(z)
. (2.11)

Consequently, the point z = z0 is determined by the solution (on the positive real axis, closest
to the origin) of the equation

Q(z) = 1. (2.12)

We define the numbers of x-unfolded neighbour-avoiding n-edge walks, and prime n-
edge walks, which do not contain a translate of the prime pattern W , to be Bn(W̄ ) and Qn(W̄)

respectively, and their generating functions as

B(z, W̄ ) =
∑
n

Bn(W̄ )zn (2.13)

and

Q(z, W̄ ) =
∑
n

Qn(W̄ )zn. (2.14)

For any prime pattern W such that Bn(W̄ ) > 0 for some n > 0, concatenating the end of
an m-step x-unfolded walk which does not contain W to the start of an n-step x-unfolded
walk which does not contain W does not create any occurrences of W (since it is prime) and
hence creates an (n+m)-step x-unfolded walk which does not contain W . This concatenation
argument thus leads to the existence of the limit

lim
n→∞ n−1 logBn(W̄ ) = κ0(W̄ ) (2.15)

and the inequality κ0(W̄ ) � κ0 follows by inclusion. B(z, W̄ ) converges when z < z0(W̄ ) =
e−κ0(W̄ ) and diverges when z > z0(W̄ ). Clearly, z0(W̄ ) � z0. An argument similar to that
of Kesten [11], see also Janse van Rensburg et al [14], shows that B(z, W̄ ) also diverges at
z0(W̄ ). We can derive a generalized renewal equation relating B(z, W̄ ) and Q(z, W̄ ), giving

B(z, W̄ ) = Q(z, W̄ )

1 − Q(z, W̄ )
. (2.16)
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z0(W̄ ) is the solution of the equation Q(z, W̄ ) = 1. Since there is at least one prime walk which
contains the prime patternW (e.g. the patternW itself), we have the inequality Q(z, W̄ ) < Q(z)

for z > 0 and therefore Q(z0) < 1 which shows that z0 < z0(W̄ ). Therefore, κ0(W̄ ) < κ0.
Again, using arguments similar to those of Kesten [11] in the proof of his theorem 5, one can
show that

B(z, W̄ ) � C(z, W̄ ) � e2B(z,W̄ )

z
(2.17)

where

C(z, W̄ ) =
∑
n

Cn(W̄ )zn. (2.18)

This shows that C(z, W̄ ) diverges at the same point as B(z, W̄ ), i.e. at z = eκ0(W̄ ), which
completes the proof. �

Define W to be a K-pattern if W is a finite neighbour-avoiding walk which can appear at
least three times on at least one sufficiently long neighbour-avoiding walk.

Theorem 2. Let W be a K-pattern and Cn(W̄ ) be the number of n-edge neighbour-avoiding
walks in which a translate of W never occurs. Then Cn(W̄ ) satisfies the inequality

lim
n→∞ n−1 logCn(W̄ ) < κ0. (2.19)

Proof. By adding edges any K-pattern can be converted into a prime pattern, so that to
each K-pattern W there exists a prime pattern W † which contains W as a subwalk. Thus
Cn(W̄ ) � Cn(W̄ †) and the theorem follows as a corollary to theorem 1. �

Let W̃ be the undirected neighbour-avoiding walk associated with K-pattern W . Let
Pn(W̄ ) be the number of n-step neighbour-avoiding polygons in which a translate of W̃ never
occurs.

Theorem 3. Pn(W̄ ) satisfies the inequality

lim sup
n→∞

n−1 logPn(W̄ ) < κ0. (2.20)

Proof. Deleting two consecutive edges and orienting the remaining edges converts an n edge
neighbour-avoiding polygon into an (n − 2)-step neighbour-avoiding walk. Since deleting an
edge from a polygon which does not contain a translate of W̃ cannot create the K-pattern W

in the resulting walk, we have the inequality

Pn(W̄ ) � Cn−2(W̄ ). (2.21)

Equation (2.20) follows from equations (2.19) and (2.21). �
Let Cn(ε,W) be the number of n-step neighbour-avoiding walks in which at most �εn�

translates of W occur. Let Pn(ε,W) be the number of n-step neighbour-avoiding polygons in
which at most �εn� translates of W̃ occur.

Theorem 4. For every K-pattern W there exists ε > 0 such that

lim sup
n→∞

n−1 logCn(ε,W) < κ0 (2.22)

and

lim sup
n→∞

n−1 logPn(ε,W) < κ0. (2.23)
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Proof. Equation (2.22) follows from an argument similar to that of lemma 7.2.5 in Madras
and Slade [1], and equation (2.8). Equation (2.23) follows immediately from equation (2.22)
and the fact that

Pn(ε,W) � Cn−2(ε,W) (2.24)

by an argument similar to that leading to equation (2.21). �

Corollary 1. There exists a K-pattern W and a positive number ε such that the number of
self-avoiding walks (polygons) with k contacts is related to the number of neighbour-avoiding
walks (polygons) by the inequalities(�εn�

k

)
[Cn − Cn(ε,W)] � cn(k) (2.25)

(�εn�
k

)
[Pn − Pn(ε,W)] � pn(k). (2.26)

Proof. Consider the K-pattern W = u1ū2ū2u1u1u2 in Z2. This pattern occurs with positive
density on all except exponentially few neighbour-avoiding walks and polygons. W can be
converted to u1ū2u1ū2u1u2 by an edge permutation so that each walk containing more than
�εn� translates of W can be converted into a walk with k contacts in at least

(�εn�
k

)
ways. A

similar argument works for polygons and a similar pattern can be constructed in any dimension
greater than or equal to two. The details of this construction are given next.

For each d > 2 the pattern begins as follows W1 = u1ū2ū2u1u1u2u3u3ū1. For k � 2,
we define Wk = u2ku2kū2k−1ū2k−1ū2k−1ū2k−1ū2kū2kū2kū2ku2k−1u2k−1. Then for d = 2k,
k � 2, the pattern is taken to be W = W1W2 . . .Wk . For d = 2k + 1, k � 2, the pattern
is taken to be W = W1W2 . . .Wkududud−1ud−1u2u2ūd ūd ūd ūd ū2ū2. For d = 3, the pattern
is W = W1u2u2u1ū3ū3ū1ū3ū3ū2ū2. In all cases, the pattern W is constructed so that if the
start of the pattern is at vertex v then vertex v0 = v + 2u1 − u2 cannot be part of the walk or
polygon, the vertices v0 ± ui for i � 3 cannot be part of the walk or polygon, and v0 + u2

cannot be part of the walk or polygon. W can then be converted to W ′ by changing W1 in W

to u1ū2u1ū2u1u2u3u3ū1. Thus exactly one new contact is created. �

Corollary 2. Given any integer k � 0, the following limits exist and are independent of k:

lim
n→∞ n−1 log cn(k) = lim

n→∞ n−1 logpn(k) = κ0. (2.27)

Proof. The case k = 0 was proved in lemma 1. For k > 0, consider any walk (polygon), ω,
in Zd with k contacts. Each contact has two endpoints which are vertices in ω. Breaking ω

at every endpoint of a contact, results in at most a (2k + 1)-tuple ((2k)-tuple) of walks which
are either neighbour-avoiding or have exactly one contact and that contact’s endpoints are
the first and last vertices of the walk. A walk of the second kind can be transformed into a
neighbour-avoiding walk by removing the last step of the walk. Thus

cn(k) � (2d − 1)2k+1
∑

{mi |n−2k−1�∑2k+1
i=1 mi�n}

2k+1∏
i=1

Cmi
(2.28)

and

pn(k) � (2d − 1)2k
∑

{mi |n−2k�∑2k
i=1 mi�n}

2k∏
i=1

Cmi
. (2.29)
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Next, using the facts that Cn � BneO(
√
n) and BnBm � Bn+m (which follows from a

concatenation argument), equations (2.28) and (2.29) establish the inequalities

cn(k) � (2k + 1)

(
n + 2k

2k

)
BneO(

√
n) (2.30)

and

pn(k) � (2k)

(
n + 2k − 1

2k − 1

)
BneO(

√
n). (2.31)

Taking logarithms, dividing by n, and then letting n go to infinity in equations (2.25), (2.30),
(2.26), (2.31) and then using lemma 1 and equation (2.7) gives the required result. �

The above result establishes (a), however, the upper bounds obtained in equations (2.30)
and (2.31) are too weak for establishing results related to (b). We next prove an improved upper
bound for pn(k) in terms of pn(0) for d = 2. The basic idea is to start with an arbitrary polygon
with n edges and k � 1 contacts and then, by an appropriate contact removal process, construct
from it a sequence of one or more neighbour-avoiding polygons with a total of m � n edges
distributed between them. For our purposes, an appropriate contact removal process would
have the property that the number of distinct k-contact n-edge polygons which reduce (via the
contact removal process) to the same sequence of neighbour-avoiding polygons is bounded
above by Ck

(
an

k

)
for some numbers C, a � 0 which are independent of n and k. The contact

removal process employed here is divided into a number of stages. Given a polygon ω with n

edges and k � 1 contacts, these stages can be roughly described as follows:

(1) First perform a U-turn reduction on ω. This term will be clarified in section 2.1 but the
basic idea is to perform a transformation such as that indicated in figure 1(a). In figure 1(a),
the polygon on the left is converted to the polygon on the right by deleting a sequence of
U-turns associated with the portion of the polygon that has vertices explicitly shown as
full circles.

(2) Next perform a tunnel reduction on the U-turn reduced polygon. This process will be
clarified in section 2.2 but the basic idea is to perform a transformation such as that
indicated in figure 2(a). The tunnel in figure 2(a) is the section of the polygon that has
vertices explicitly shown as full circles.

(3) Finally, since the contacts which remain in a tunnel-reduced polygon are relatively isolated,
another construction which removes contacts by making local changes in the polygon in
well defined regions around the contacts is used. The basic approach for this final stage is
similar to one used for removing a vertex of degree four from a figure-eight graph (James
and Soteros [15]) and is explained in section 2.3.

In this process we take advantage of the planarity of Z2 and as a result the procedure does not
easily extend to dimensions higher than two. The details of the process are presented next as
a sequence of lemmas leading to a theorem which combines the lower bound of corollary 1
with the upper bound obtained from the sequence of lemmas.

We say that an event occurs within a distance r of a vertex v if the event occurs in the
subgraph of the square lattice defined by the vertex set {v + α1u1 + α2u2| − r � α1 � r,−r �
α2 � r}, this subgraph is referred to as the (2r) × (2r) box centred at v.

2.1. U-turn reduction

A U-turn is defined to be any subwalk of a self-avoiding walk or polygon in Z2 consisting of a
sequence of three steps in the form δ1ui, δ2ui ′ , (−δ1)ui where δ1, δ2 ∈ {−1, 1} and i, i ′ ∈ {1, 2}
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Figure 1. (a) An example of a U-turn reduction. The polygon on the left, ω, is converted into the
polygon on the right by deleting a sequence of U-turns associated with the portion of the polygon
that has vertices explicitly shown as full circles. (b) An example of a 5-cul-de-sac, T , and its
associated cul-de-sac polygon. T is shown on the left as a planted tree in Z2 (vertices in Z2 are
denoted by open circles and edges are denoted by broken lines) with its plant vertex circled. In this
case, T is associated with the indicated set of five contacts of ω. The cul-de-sac polygon associated
with T is shown on the right.

such that i �= i ′. Note that the first and last vertex in a U-turn are necessarily the endpoints
of a contact edge of the self-avoiding walk or polygon (provided the polygon has greater than
four edges) and such a contact edge will be referred to as a U-turn contact.

Let Z2 be the square lattice dual to Z2 such that vertices in Z2 are dual to a unit square
in R2 whose boundary is in Z2. A vertex in Z2 is said to be dual to a U-turn of a walk or
polygon in Z2 if the boundary of its dual square consists of a U-turn and a U-turn contact. Let
G̃ be a subset of R2 which is formed from the union of unit squares whose boundaries are in
Z2. A subgraph G of Z2 is said to be dual to G̃ if G consists of the vertices of Z2 dual to the
unit squares of G̃ and contains all the edges of Z2 which join vertices dual to unit squares in
G̃ which share a common edge. Let T be a tree with e edges and s vertices of degree one in
Z2 which is dual to a disc D = D(T ) in R2 whose boundary is in Z2; note that such a tree is
necessarily a neighbour-avoiding tree. If T is a planted tree, form T ′′ by removing the plant
vertex and edge from T . T ′′ is dual to a disc D′′ in R2. We define the cul-de-sac polygon of
T to be the boundary polygon of D′′, i.e. ∂D′′, and note that it has 2e + 2 edges in Z2 (see,
for example, figure 1(b)). For e � 2, let T ′ be obtained from T by removing all vertices of
degree one and their incident edges from T . T ′ is dual to a disc D′ in R2. We define the tunnel
polygon of T , T = T (T ), to be the boundary polygon of D′, i.e. T = ∂D′, and note that it
has 2(e − s) + 4 edges in Z2 (see, for example, figure 2(b)).

Given two vertices, v1 and v2, in Z2 if v2 comes later than v1 in a lexicographic ordering
of the vertices of Z2 according to their coordinates then this is denoted by v1 < v2. Given
two edges, e1 and e2, in Z2 let v1 (v2) represent the coordinates of the midpoint of e1 (e2). If
v2 comes later than v1 in a lexicographic ordering of all the edge midpoints according to their
coordinates then this is denoted by e1 < e2.
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Figure 2. (a) An example of a tunnel reduction. The polygon on the left, ω, is converted into the
two polygons on the right by deleting the portion of the polygon that has vertices explicitly shown
as full circles. (b) An example of a 6-tunnel, T , and its associated tunnel polygon. T is shown on
the left as a planted tree in Z2 (vertices in Z2 are denoted by open circles and edges are denoted
by broken lines) with its plant vertex circled. In this case, T is associated with the indicated set of
six contacts of ω. The tunnel polygon associated with T is shown on the right.

Lemma 2. Given a polygon ω with n edges and k contacts, there exist non-negative integers
m, k′, r , with k′ + (n − m)/2 � k and an algorithm for constructing from ω a unique 3-tuple
(ω̃, F, E) where: ω̃ is a polygon with m edges, r of which are distinguished, and k′ contacts;
F is an r-tuple of planted lattice trees each of which has one or more edges and is dual to
a disc in R2; E is an r-tuple of distinct edges, E1 > E2 > · · · > Er from the square lattice.
Furthermore, (ω̃, F , E) satisfies the following.

(a) Each edge in E is a contact edge of ω.
(b) ω̃ does not contain any U-turns.
(c) Construct a subgraph, 0, of Z2 as follows. The lexicographically first distinguished edge

of ω̃ is translated to coincide with the first edge in E and ω̃ is added to 0. For each
component of F , translate the plant edge in the j th component of F to be dual to the j th
edge in E and add to 0 the cul-de-sac polygons associated with the component trees of
F . Delete from 0 both edges of every pair of double edges formed in this process. The
resulting graph is 0 and 0 = ω.

Proof. Consider a polygon ω with n edges and k contacts. If k = 0, then set ω̃ = ω, m = n,
k′ = k = 0, r = 0, F = E = φ.

For k � 1, construct a subgraph G(ω) of Z2 as follows: for each contact edge K in ω

add its dual edge in Z2 to G(ω). Since ω is a polygon in Z2, G(ω) is a forest in Z2 with
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k edges. A branch point in a tree is defined to be any vertex with degree greater than two;
a leaf or end point is defined to be any vertex of degree one. A branch of a tree is defined
to be any path between two branch points or a branch and an end point or two end points of
the tree such that all but the first and last vertices of the path are vertices of degree two in the
tree.

Let G′(ω) be the subforest of G(ω) formed as follows: first add each component of
G(ω) for which at most one vertex of degree one is not dual to a U-turn in ω; next, for each
component, T , of G(ω) with more than one vertex of degree one not dual to a U-turn and
for each branch point of T , if all but one of the branches connected to it contain an end point
dual to a U-turn then add all the branches connected to it to G′(ω) otherwise add to G′(ω)

only the branches which contain an end point dual to a U-turn. In this way, each component
of G′(ω) has at most one unit degree vertex which is not dual to a U-turn. A vertex v of
G′(ω) is said to be a type one vertex if it has unit degree and is not dual to a U-turn of ω;
a type two vertex if it has degree two, is incident on two perpendicular edges of G′(ω), and
has exactly three of its four nearest neighbours from Z2 being vertices in ω; or a type three
vertex if it has degree two and corresponds to a vertex of degree four in a component of
G(ω). Using G′(ω), we next form a forest, G′′(ω), consisting of one or more planted lattice
trees.

Given a component of G′(ω), if it has one type one vertex and no vertices of type two
or three we plant the component at that unit degree vertex and add the planted tree to G′′(ω).
Otherwise, either the component has no type one, two or three vertices and hence is dual to
ω, or it has at least one vertex, v, of type two or three. In the first case, plant the tree at the
vertex of degree one which is lexicographically first in an ordering of the vertices of degree
one of the component and add the planted tree to G′′(ω). In the second case, if the component
contains no type one vertex and only one vertex v of either type two or three, then create two
planted trees (both planted at v) by dividing the component into two parts at v and repeating
the vertex v; add both trees to G′′(ω). Otherwise there are vertices v1, . . . , vl l > 1 such that
vi is either type one, two, or three (note that there is at most one type one and at most one
type three vertex in the list), in this case for each i �= j remove all the edges in the component
that are part of the path between vi and vj and remove any isolated vertices that result from
this operation. After this edge and vertex deletion process, the result is a forest in which each
component has exactly one vertex v either of type one, two or three; a planted tree for each
component can thus be obtained as discussed previously. Add the resulting planted trees to
G′′(ω).

Any component of G′′(ω) consisting of r ′ � 1 edges is called an r ′-cul-de-sac of ω. If
G′′(ω) = φ, then ω has no U-turns and thus set ω̃ = ω, m = n, k′ = k, r = 0, F = E = φ.
Otherwise, every plant edge in G′′(ω) is dual to a contact edge in ω. Let L1 be the top (i.e.
last) plant edge of G′′(ω) in a lexicographic ordering of the plant edge midpoint coordinates,
and let K1 be the contact edge in Z2 dual to L1. The edge K1 of Z2 and the edges of ω divide
R2 into three regions. Let ω1 be the polygon which forms the boundary of the region in R2

containing the plant vertex incident on L1, distinguish the edge K1 in ω1 and add K1 to E .
The component of G′′(ω) which contains L1 becomes the first component, t1, of F . Let L2 be
the top plant edge among the plant edges of G′′(ω1). Let K2 be the contact edge dual to L2.
The edge K2 of Z2 and the edges of ω1 divide R2 into three regions. Let ω2 be the boundary
polygon of the region containing the plant vertex incident on L2 and distinguish the edge K2

in ω2. Let K2 be the next edge in E . The component of G′′(ω1) which contains L2 is the next
component, t2, of F . The process is continued until G′′(ωr) is empty. ω̃ is ωr and the edges
in E along with the associated components of F are reordered so that the edges in E are in
reverse lexicographic order.
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The process just described for forming ω̃ (a polygon with m � 4 edges and k′ contacts
and no U-turns) can be viewed as the following process. Start with ω. Next, U-turns (and any
new U-turns that are formed) associated with edges in the components of F are successively
deleted. The deletion of a U-turn with polygon edges {v1, v2}, {v2, v3}, {v3, v4} is accomplished
by deleting from the polygon the three edges of the U-turn and then adding to the polygon the
edge {v1, v4}; the resulting polygon therefore has two fewer edges. Since each U-turn removed
in this process corresponds to an edge of a component of F , the total number of edges in F

is thus (n − m)/2. Note also that it is possible that some components of G′′(ω) may not be
components of F . Therefore, the total number of edges in F may be less than the total number
of edges in G′′(ω) which is k − k′. �

The resulting polygon, ω̃, is called a U-turn reduced polygon. Let p̂n(k) denote the
number (up to translation) of n-edge k-contact U-turn reduced polygons. Note that for any
n and k such that pn(k) > 0, n � 4 and must be even and k � (d − 1)n. Furthermore,
for d = 2, since there must be at least four vertices in the polygon which are not part of a
contact,

0 � k � n − 4. (2.32)

Lemma 3. Given any n and k, there exists B > 0 such that

pn(k) � Bk
k∑

k′=0

(
2n

k − k′

)
p̂n(k

′). (2.33)

Proof. By lemma 2, there is a one-to-one correspondence between n-edge, k-contact polygons
and 3-tuples (ω̃, F, E) satisfying the conditions of lemma 2. Note that ω̃ is an m-edge, k′-
contact, U-turn reduced polygon with r distinguished edges. Hence pn(k) is equal to the
sum over m, k′, r , and the associated possible choices of 3-tuples (ω̃, F, E) which satisfy the
conditions (1)–(3) of lemma 2. Given a 3-tuple (ω̃, F, E) which satisfies conditions (1)–(3) of
lemma 2, let ej be the total number of edges and sj be the total number of vertices of degree
one in the j th component of F so that

∑r
j=1 ej = (n−m)/2 � k−k′ and 2 � sj � (2ej +4)/3

(this upper bound is clear from the fact that for each vertex of degree one in a tree in F there
must be three edges in its dual polygon in Z2).

With the variables m, k′, r, e1, . . . , er , s1, . . . , sr fixed, an upper bound will be determined
on the number of ways to construct ω̃ and F and then connect the components of F to ω̃ (i.e.
form E) in order to construct a polygon. Then, by summing appropriately over the variables
m, k′, r, e1, . . . , er , s1, . . . , sr , an upper bound on pn(k) is obtained.

The number of ways to construct ω̃ is p̂m(k
′) for m � 4. The number of ways to construct

a forest F which is an r-tuple of planted lattice trees is
∏r

i=1 si tei (si), where tei (si) is the
number of lattice trees (up to translation) on Z2 with ei edges and si vertices of degree one
and this is multiplied by si , the number of ways to select a plant edge. The number of ways to
reconstruct a polygon from ω̃ and F (i.e. the number of ways to form E) is bounded above by
the number of ways to distinguish r edges in ω̃, i.e.

(
m

r

)
. This results in the following bound:

pn(k) �
k∑

k′=0

n∑
m=n−2(k−k′)

min{m,k−k′}∑
r=0

p̂m(k
′)
(
m

r

) ∑
{ei }

∑
{si }

r∏
i=1

si tei (si) (2.34)

where the sum over {ei} is the sum over {ei � 1|i = 1, . . . , r, r �
∑

i ei = (n−m)/2 � k−k′}
and the sum over {si} is over {si � 2|i = 1, . . . , r; si � (2ei + 4)/3}. Let te = ∑

s�2 te(s),
then (see, for example, [16])

log λ ≡ lim
e→∞ e−1 log te = sup

e�1
e−1 log te � 3 log 2 (2.35)
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and hence for any choice of e, te � λe. Using this fact and that si � (2ei + 4)/3 � 2ei and
that for any b � A,

(
A

b

)
� 2A,

∑
{ei }

∑
{si }

r∏
i=1

si tei (si) �
∑
{ei }

2r

( r∏
i=1

ei

) ∑
{si }

( r∏
i=1

tei (si)

)

= 2r
∑
{ei }

r∏
i=1

(
ei

1

) r∏
i=1

[∑
si�2

tei (si)

]
= 2r

∑
{ei }

r∏
i=1

(
ei

1

) r∏
i=1

tei

� 2r (2λ)(n−m)/2
∑
{ei }

1 = 2r (2λ)(n−m)/2

(
(n − m)/2 − 1

r − 1

)

� 2r (4λ)(n−m)/2 � (8λ)k−k′
(2.36)

where the fact that r � (n − m)/2 � k − k′ was used to obtain the last inequality. Therefore,
equations (2.34) and (2.36) lead to

pn(k) �
k∑

k′=0

(8λ)k−k′
n∑

m=n−2(k−k′)

min{m,k−k′}∑
r=0

p̂m(k
′)
(
m

r

)
(2.37)

�
∑
k′

p̂n(k
′)(8λ)k−k′

n∑
m=n−2(k−k′)

k−k′∑
r=0

(
2n

r

)
(2.38)

�
∑
k′

p̂n(k
′)(8λ)k−k′

[2(k − k′) + 1]
k−k′∑
r=0

(
2n

r

)
(2.39)

�
∑
k′

p̂n(k
′)(8λ)k−k′

[2(k − k′) + 1](k − k′ + 1)

(
2n

k − k′

)
(2.40)

�
k∑

k′=0

p̂n(k
′)(64λ)k−k′

(
2n

k − k′

)
(2.41)

where the facts that j + 1 � 2j for all j � 1 and that n � k have been used several times.
Taking B = 64λ gives the required result. �

2.2. Tunnel reduction

Lemma 4. Given an integer g � 2 and a U-turn reduced polygon ω with n edges and k

contacts, there exist non-negative integers m, k′, b, m1, . . . , mb, k1, . . . , kb and r1, . . . , rb with
1 � b � (k − k′)/2 + 1 − (n − m)/4,

∑b
i=1 mi = m, and

∑b
i=1 ki = k′, and an algorithm for

constructing from ω a unique b-tuple ((ω1, F1, E1), . . . , (ωb, Fb, Eb)) where: ω1 is a polygon
with m1 edges, r1 of which are distinguished and k1 contacts; for i > 1, ωi is an edge-rooted
polygon with mi edges, with ri − 1 � 0 non-root distinguished edges, and ki contacts; F1 (Fi ,
i > 1) is an r1-tuple ((ri −1)-tuple) of planted lattice trees, each of which has g or more edges
and is dual to a disc in R2; and Ei is an ri-tuple of distinct edges, Ei1, . . . , Eiri , from the square
lattice with Ei2 > Ei3 > · · · > Eiri (for i = 1, Ei1 > Ei2 as well). Furthermore, the (ωi , Fi , Ei)
satisfy the following:

(1) Each edge in Ei is a contact edge of ω.
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(2) Construct a graph 0 as follows. For all i > 1, the root edge of ωi is translated to coincide
with the first edge in Ei and ωi is added to 0. The top distinguished edge of ω1 is translated
to coincide with the first edge in E1 and ω1 is added to 0. For each component of F1,
translate the plant edge in the j th component of F1 to be dual to the j th edge in E1 and
add to 0 the tunnel polygons associated with the component trees of F1. For each i > 1
and each component of Fi , translate the plant edge in the j th component of Fi to be dual
to the (j +1)th edge in Ei and add to 0 the tunnel polygons associated with the component
trees of Fi . Delete from 0 both edges of every pair of double edges formed in this process.
The resulting graph is 0 and 0 = ω. Hence the total number of edges in the Fis is
(n − m)/2 + 2(b − 1).

(3) Let r ≡ ∑b
i=1 ri . Then the total number of component trees is r1 +

∑b
i=2(ri −1) = r−b+1

with 0 � b − 1 � r � k − k′ and for b > 1, 2 � b � r . If g � 3, then r + b − 1 + k′ � k.

Proof. Given g � 2, consider a U-turn reduced polygon ω with n edges and k contacts. If
k = 0, then set b = 1, ω̃1 = ω, m1 = n, k′ = k1 = k = 0, r = r1 = 0 and F1 = E1 = φ.

For k � 1, construct a subgraph G(ω) of Z2 as follows: for each contact edge K in ω add
its dual edge in Z2 to G(ω). Since ω is a polygon in Z2, G(ω) is a forest in Z2 with k edges.
For each vertex v of degree two in G(ω) which is incident on two perpendicular edges of G(ω)

and with exactly three of its four nearest neighbours from Z2 being vertices in ω, create two
trees (both containing v) by dividing the component into two parts at v and repeating the vertex
v. Thus we obtain a forest, G′(ω), consisting of one or more lattice trees. Any component of
G′(ω) consisting of r ′ edges is called an r ′-tunnel of ω. Let Fg(ω) be the subforest of G′(ω)

consisting of the components of G′(ω) with at least g edges, i.e. all r ′-tunnels for which r ′ � g.
If Fg(ω) = φ, then set b = 1, ω̃1 = ω, m1 = n, k′ = k1 = k, r = r1 = 0, and

F1 = E1 = φ. Otherwise, every leaf in Fg(ω) is dual to a contact edge in ω. Let L1 be the
top leaf of Fg(ω) in a lexicographic ordering of the coordinates of the leaf midpoints, and
let K1 be the contact edge in Z2 dual to L1. The edge K1 of Z2 and the edges of ω divide
R2 into three regions. Let ω1

1 be the polygon which forms the boundary of the region in R2

containing the vertex of degree one incident on L1, distinguish the edge K1 in ω1
1 and add K1

to E1. The component of Fg(ω) which contains L1 is considered planted at L1 and becomes
the first component, t1, of F1. Let L2 be the top leaf of the set of leaves of Fg(ω) which are
dual to a contact of ω1

1. Let T the component of Fg(ω) which contains L2. The edges of ω1
1

along with the edges of Z2 which are dual to a leaf of T divide R2 into a number of regions
each bounded by a polygon. Let ω2

1 be the boundary polygon that contains K1 and define K2

to be the edge of Z2 contained in ω2
1 which is dual to a leaf of T . Distinguish the edge K2 in

ω2
1 and define L2 to be the leaf of T which is dual to K2. Let K2 be the next edge in E1. T

is planted at L2 and is the next component, t2, of F1. The process is continued until ωr1
1 has

no contact edges dual to leaves of Fg(ω). ω1 is defined to be ω
r1
1 and the edges of E1 along

with their associated components in F1 are reordered so that the edges of E1 are in reverse
lexicographic order.

Next consider ω − ω1 (that is the graph obtained from ω by removing any edges of ω1

contained in it). Consider the top leaf of t1, other than L1. When the edge of Z2 dual to this
top leaf is added to ω − ω1, R2 is divided into three regions. Let ω1

2 be the boundary of the
region containing the vertex of degree one incident on a leaf of t1. ω2, F2, and E2 are then
formed from ω1

2 by performing the same procedure that was used to form ω1 from ω1
1. The

process continues through the leaves of t1, t2, . . . in a breadth first fashion to result in b 3-tuples
satisfying conditions (1) and (2).

To show that condition (3) is satisfied, consider g � 3 and let t be the j th component of
Fi . Suppose t has e

(j)

i � 3 edges and s
(j)

i � 2 vertices of degree one. It is first shown that
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e
(j)

i � 2s(j)i − 1. Let v3 and v4 be respectively the number of vertices of degree three and four
in t . Then s

(j)

i = 2 + v3 + 2v4. If v3 = v4 = 0, then s
(j)

i = 2 and e
(j)

i � 3 = 2s(j)i − 1.
Otherwise either v3 �= 0 or v4 �= 0. Since ω contains no U-turns, for each vertex of degree
three in t there must be at least three non-leaf edges, and for each vertex of degree 4 in t there
must be at least eight such edges. Hence e

(j)

i � s
(j)

i +3v3 +8v4 = 2s(j)i +2v3 +6v4 −2 � 2s(j)i .
Thus the total number of edges in the Fis, e′, satisfies

b∑
i=1

r ′
i∑

j=1

(2s(j)i − 1) � e′ � k − k′

r + b − 1 = 2r − (r − b + 1) � e′ � k − k′
(2.42)

where r ′
1 = r1 and r ′

i = ri − 1 for i > 1. �

Define p̃n(k) to be the number (up to translation) of n-edge k-contact U-turn reduced
polygons ω such that if g = 3 in the above lemma then F 3(ω) is empty and m = n, k = k′,
b = 1, and ω1 = ω (i.e. the number of polygons such that G′(ω) contains no connected
components with three or more edges). Polygons counted in p̃n(k) are denoted tunnel-reduced
polygons.

Lemma 5. Given any n and k, there exists D > 0 such that

p̂n(k) � Dk
k∑

k′=0

(
2n

k − k′

)
p̃n(k

′). (2.43)

Proof. Let P be an m-edge, l-contact, tunnel-reduced polygon in Z2 and let Q be an n-edge,
k-contact, tunnel-reduced polygon in Z2. Since P and Q do not contain any U-turns, the
concatenation argument of lemma 1 that leads to equation (2.5) can be applied to concatenate
P and Q and create an (m + n)-edge, (l + k)-contact, tunnel-reduced polygon. Hence

p̃m(l)p̃n(k) � p̃m+n(l + k). (2.44)

Let ω be a U-turn reduced polygon in Z2 with n edges and k contacts. By the proof of
lemma 4, there exists a forest G′(ω). If no component of G′(ω) consists of three or more
edges, i.e. F 3(ω) is empty, then ω is itself a tunnel-reduced polygon. Otherwise the proof
will rely on removing tunnel polygons associated with F 3(ω) from ω to remove some of the
contacts in ω and create a tunnel-reduced polygon.

By lemma 4, p̂n(k) is equal to the sum over m, k′, b, and the associated possible choices
of b-tuples ((ω1, F1, E1), . . . , (ωb, Fb, Eb)) which satisfy the conditions (1)–(3) of lemma 4.
Let F represent the l-tuple, l = r − b + 1, formed from the component trees of the Fis in the
order prescribed by F1, F2, . . . , Fb. Note that ω1, . . . , ωb are tunnel-reduced polygons. Given
a b-tuple, let mi be the total number of edges, ri be the number of roots and distinguished
edges, and ki the total number of contacts in ωi such that m = ∑b

i=1 mi , k′ = ∑b
i=1 ki and

r = ∑b
i=1 ri . Hence k − k′ is an upper bound on the total number of edges and r is the total

number of vertices of degree one in F . Let ej be the number of edges in the j th component tree
so that

∑l
j=1 ej = e′ = (n−m)/2 + 2(b − 1) � k − k′. Note also that n = m + 2e′ + 4l − 4r .

With the variables m, k′, b, r,m1, . . . , mb, k1, . . . , kb fixed we determine an upper bound on
the number of ways to construct the b polygons, the forest F , and the ways to connect these
to form a polygon (i.e. the number of ways to form the Eis), and then summing appropriately
over the variables m, k′, b, r,m1, . . . , mb, k1, . . . , kb we obtain an upper bound on p̂n(k).
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The number of ways to construct the b polygons is U1 = ∏b
i=1 p̃mi

(ki) and using
equation (2.44) this is bounded from above by p̃m(k

′). In analogy with equation (2.36),
the number of ways, U2, to construct the forest and an associated upper bound are given by

U2 =
∑
{ei }

∑
{si }

l∏
i=1

si tei (si) � 2r
∑
{ei }

∑
{si }

l∏
i=1

tei (si)

� 2r (λ)(n−m)/2+2(b−1)

(
(n − m)/2 + 2(b − 1) − 1

r − b

)

� 2r (2λ)(n−m)/2+2(b−1) � (4λ)k−k′
(2.45)

where the sum over {ei} is the sum over {ei � 1, i = 1, . . . , l|r �
∑

iei = (n−m)/2 + 2(b −
1) � k − k′} and the sum over {si} is over {si � 2, i = 1, . . . , l|∑l

i=1si = r}. The number
of ways to reconstruct the polygon from the b polygons and forest F is bounded above by the
number of ways to root and distinguish r edges in the b polygons, U3. This number and an
associated bound is given by

U3 =
∑
{ri }

[
b∏

i=1

(
mi

ri

)] [
b∏

i=2

(
ri

1

)]
� 2r

∑
{ri }

[
b∏

i=1

(
mi

ri

)]
� 2r

(
m

r

)
(2.46)

where the sum over {ri} is over {ri, i = 1, . . . , b|r1 � 0, ri � 1 for i � 2,
∑b

i=1 ri = r} and
where for the last inequality the following combinatorial identity has been used:(

a

b

)
=

∑
bi

s∏
i=1

(
ai

bi

)
(2.47)

where
∑s

i=1 ai = a and the sum is over all choices of {bi |
∑s

i=1 bi = b}. Combining these
bounds and using the fact that r + b − 1 � k − k′ results in the following bound with
rmax = min{m, k − k′ − b + 1}:

p̂n(k) �
k∑

k′=0

n∑
m=n−2(k−k′)

1+(k−k′)/2−(n−m)/4∑
b=1

rmax∑
r=0

∑
{mi }

∑
{ki }

U1U2U3

�
k∑

k′=0

(4λ)k−k′
n∑

m=n−2(k−k′)

p̃m(k
′)

1+(k−k′)/2∑
b=1

rmax∑
r=0

2r

(
m

r

) ∑
{mi }

∑
{ki }

1

�
k∑

k′=0

(4λ)k−k′
p̃n(k

′)
n∑

m=n−2(k−k′)

1+(k−k′)/2∑
b=1

rmax∑
r=0

2r

(
m

r

)(
m − 1

b − 1

)(
k′ + b − 1

k′

)

� 2k
k∑

k′=0

(4λ)k−k′
p̃n(k

′)
n∑

m=n−2(k−k′)

1+(k−k′)/2∑
b=1

rmax∑
r=0

2r

(
m

r

)(
m − 1

b − 1

)

� 2k
k∑

k′=0

(8λ)k−k′
p̃n(k

′)
n∑

m=n−2(k−k′)

1+(k−k′)/2∑
b=1

rmax∑
r=0

(
2m − 1

r + b − 1

)

� 2k
k∑

k′=0

(8λ)k−k′
p̃n(k

′)
n∑

m=n−2(k−k′)

1+(k−k′)/2∑
b=1

k−k′−b+1∑
r=0

(
2n − 1

r + b − 1

)

� 2k
k∑

k′=0

(8λ)k−k′
p̃n(k

′)
n∑

m=n−2(k−k′)

1+(k−k′)/2∑
b=1

k−k′∑
s=0

(
2n − 1

s

)



4026 C E Soteros and S G Whittington

� 2k
k∑

k′=0

(8λ)k−k′
p̃n(k

′)
n∑

m=n−2(k−k′)

(1 + (k − k′)/2)(k − k′ + 1)

(
2n − 1

k − k′

)

� 2k
k∑

k′=0

(8λ)k−k′
p̃n(k

′)[2(k − k′) + 1](1 + (k − k′)/2)(k − k′ + 1)

(
2n − 1

k − k′

)

� 2k
∑
k′

(128λ)k−k′
p̃n(k

′)
(

2n − 1

k − k′

)
(2.48)

where the fact that A+ 1 � 2A for all A � 1 has been used for the last inequality. Thus setting
D = 256λ gives the required result. �

2.3. Final stage

Lemma 6. Given the box R = {(x, y) ∈ Z2| − 8 � x � 8,−8 � y � 8} and any polygon
ω with n edges and k � 1 contacts in Z2, suppose {(x0, y0), (x1, y1)} is a contact of ω with
x1 � x0, y1 � y0. If there are no other contacts in the box (x0, y0) + R, then it is possible, by
only altering edges and vertices within the box, to construct a new m-edge, k′-contact polygon
ω′ with n − 8 � m � n, k′ � k − 1, no contacts within the box, and such that ω′ = ω outside
the box.

Proof. Let ω be a polygon in Z2 and suppose {(x0, y0), (x1, y1)} is a contact of ω with x1 � x0,
y1 � y0 and such that there are no other contacts within a distance 8 from (x0, y0). There are
two possibilities:

(i) x1 = x0 + 1;
(ii) y1 = y0 + 1.

If ω satisfies case (ii), then we can rotate ω 90◦ about (x0, y0) in a clockwise direction and
obtain a polygon satisfying case (i). Hence, without loss of generality, we assume that ω

satisfies case (i). Let v = (x0, y0).
In the remainder of the proof we shall frequently take advantage of the fact that each vertex

in the polygon has degree two and also the fact that if two adjacent vertices in the box v + R,
other than those making the contact, are in the polygon then the edges joining them must also
be in the polygon.

Since there are no other contacts in the box v + R, ω has one of four forms near v:

(I) (x0, y0), (x0, y0 + 1), (x0 + 1, y0 + 1), (x1, y1) ∈ ω; or
(II) (x0, y0), (x0, y0 − 1), (x0 + 1, y0 − 1), (x1, y1) ∈ ω; or
(III) (x0, y0), (x0, y0 + 1), (x0, y0 + 2), (x0 −1, y0), (x0 + 1, y0), (x0 + 1, y0 −1), (x0 + 1, y0 −

2), (x0 +2, y0) ∈ ω and (x0 −1, y0 +1), (x0 +1, y0 +1), (x0, y0 −1), (x0 +2, y0 −1) /∈ ω;
or

(IV) (x0, y0), (x0, y0 −1), (x0, y0 −2), (x0 −1, y0), (x0 + 1, y0), (x0 + 1, y0 + 1), (x0 + 1, y0 +
2), (x0 +2, y0) ∈ ω and (x0 −1, y0 −1), (x0 +1, y0 −1), (x0, y0 +1), (x0 +2, y0 +1) /∈ ω.

If case (I) or (II) applies, the contact is a U -turn contact. For case (I) the contact can be
removed by deleting the vertices (x0, y0 + 1) and (x0 + 1, y0 + 1) and the three incident edges,
and joining (x0, y0) and (x1, y1) by an edge. Case (II) can be handled similarly. If case (IV)
applies to ω, then we can reflect ω through the line x = x0 to obtain a polygon satisfying case
(III). Henceforth we assume ω satisfies case (III) (see the top of figure 3).
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Figure 3. A type (i.III) contact configuration and the cases (1), (2), (3A), (3B), (4A), (4B) with
appropriate transformations for cases (1), (2), (3A), (3B), (4A). Polygon edges are depicted by
lines; polygon vertices are depicted by full circles; empty vertices are depicted by open circles.

We next consider the following four cases:

(1) (x0 − 1, y0 + 2), (x0 − 2, y0 + 1) /∈ ω

(2) (x0 − 1, y0 + 2) ∈ ω and (x0 − 2, y0 + 1) /∈ ω

(3) (x0 − 1, y0 + 2), (x0 − 2, y0 + 1) ∈ ω

(4) (x0 − 1, y0 + 2) /∈ ω and (x0 − 2, y0 + 1) ∈ ω.

The first two columns of figure 3 show the polygon edges (lines) and vertices (full circles)
and the empty sites (open circles) induced by these four cases. Note that in each of the
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Figure 4. The polygon configurations relevant to case (i.III.4B).

cases (3) and (4) there are two possible subcases induced: (3A), (3B) and (4A), (4B). The
last column of figure 3 indicates for each of the cases (1), (2), (3A), (3B) and (4A) the
required rearrangement needed to convertω into a polygon with one less contact (these changes
can be done within a distance of 3 from (x0, y0)). The case (4B) will be treated separately
next.

Assume now that ω satisfies case (4B). Rotate ω 180◦ around the point (x0, y0) to obtain
ωπ . Because ω satisfies case (4B), ωπ falls into cases (i) and (III) above with a new (x0, y0)

defined appropriately. Hence if ωπ falls into one of the cases (1), (2), (3A), (3B) and (4A)
above it can be converted into a polygon with no contacts in the box as shown in figure 3
(within a distance 4 from the original (x0, y0)). If ωπ falls into case (4B) then ω must have the
form depicted in figure 4.1.

Now assume that ω satisfies case (4B) and has the form depicted in figure 4.1. If the vertex
(x0, y0) in ω is removed and the vertex (x0 − 1, y0 + 1) is added a new polygon ω1 is obtained
by joining (x0 − 1, y0 + 1) to (x0 − 1, y0) by an edge and (x0 − 1, y0 + 1) to (x0, y0 + 1) by an
edge. ω1 is now a polygon which falls into cases (i) and (III) above with a new (x0, y0) (within
a distance 2 of the original (x0, y0)) defined appropriately. Hence if ω1 falls into one of the
cases (1), (2), (3A), (3B), and (4A) above it can be converted into a polygon with no contacts
in the box as shown in figure 3. If ω1 falls into case (4B) then ω must have the form depicted
in figure 4.2.

Now assume that ω satisfies case (4B) and has the form depicted in figure 4.2. If the
vertex (x0 + 1, y0) in ω is removed and the vertex (x0 + 2, y0 − 1) is added a new polygon
ω2 is obtained by joining (x0 + 2, y0 − 1) to (x0 + 2, y0) by an edge and (x0 + 2, y0 − 1) to
(x0 + 1, y0 − 1) by an edge. ω2 is now a polygon which falls into cases (i) and (III) above with



Contacts in self-avoiding walks and polygons 4029

a new (x0, y0) defined appropriately. Hence if ω2 falls into one of the cases (1), (2), (3A), (3B)
and (4A) above it can be converted into a polygon with no contacts in the box as shown in
figure 3. If ω2 falls into case (4B) then either the contact can be removed as described above
or ω must have the form depicted in figure 4.3.

Now assume that ω satisfies case (4B) and has the form depicted in figure 4.3. Note that
figure 4.3 is invariant under rotation by 180◦ and that the configuration shown in figure 4.3
is contained in v + R. Figures 4.4(a) and (b) show three paths from figure 4.3 and the two
possible ways in which they could be connected within the polygon ω (i.e. it is assumed that all
the edges of ω are included in the polygon depicted in figures 4.4(a) or (b)). Let Pi represent
the path from figure 4.3 that joins A1,i to A2,i in figure 4.4(a) and (b). If in the case depicted
in figure 4.4(a) A1,1 is joined to A1,2 by a path, P ′, which is completely contained in v + R,
then a polygon ω′ can be obtained with no contacts in v + R by performing the following
transformation within v + R: delete P ′, the path from A1,1 to A1,1 − 2u2, and the path from
A1,2 to A1,2 −2u2 −u1, and then add the vertex A2,2 +2u2 and edges between polygon vertices
adjacent to it. A similar transformation can be applied if in figure 4.4(a) A2,2 is joined by a
path to A2,3 within v + R or if in figure 4.4(b) either A2,1 is joined by a path to A2,2 or A1,2 is
joined by a path to A1,3 within v + R. Otherwise, one obtains the required polygon ω′ from
ω by deleting the three paths P1, P2 and P3 from ω and adding new paths to create a new
polygon. The former contact edge is used as an edge in one of the new paths and thus there
is one less contact in the polygon. If the Pis are hooked up in ω as in figure 4.4(a), then the
new path which uses the contact edge in v + R is shown in figure 4.4(c). If the Pis are hooked
up in ω as in figure 4.4(b), then the new path which uses the contact edge in v + R is shown
in figure 4.4(d). In either case, from a detailed case analysis3 of all possible configurations of
ω within v + R it can be shown that figure 4.4(c) can be reconnected within v + R to form a
polygon ω′ which has one less contact than ω and differs from ω only within v + R. �

Lemma 7. Given M1 � 36 and M2 � 5 and given any tunnel-reduced polygon ω with n

edges, k � 1 contacts, and with top contact vertex vt (ω), one of the following two possibilities
holds.

(1) There is a tunnel-reduced polygon ω̃ with m � n edges, k′ < k contacts, and with its top
contact vertex vt (ω̃) < vt (ω), and such that ω̃ equalsω everywhere outside the 2M1×2M1

box centred at vt (ω) (that is, at least one contact can be removed from ω within a distance
M1 from vt ).

(2) There is a polygon ω̃ with m � n edges, k′ � k contacts such that ω̃ equals ω everywhere
outside the 2M2 ×2M2 box centred at vt (ω) and ω̃ contains exactly one r-tunnel, for some
r such that 3 � r � 6, within a distance M2 of vt (ω) and the lattice tree T associated with
the r-tunnel is a lattice walk. Furthermore, let T (T ) be the tunnel polygon associated
with T . Then there is a unique m1-edge, k1-contact tunnel-reduced polygon ω1 and a
unique m2-edge, k2-contact tunnel-reduced polygon ω2 both with their positions in Z2

fixed and with m1 + m2 + 2r = m, k1 + k2 + r � k′, vt (ω2) < vt (ω1) < vt (ω), and such
that ω̃ = [ω1 ∪ω2 ∪T (T )]′, where the prime denotes that both edges of any double edges
formed by the union of the edge sets of the graphs have been removed.

Proof. Given any tunnel-reduced polygon ω with n edges, k � 1 contacts, and with top contact
vertex vt (ω), the basic idea of the proof is to remove any contacts incident on vt (ω) by either
applying lemma 6 or by moving the contacts associated with vt (ω) either to create an r-tunnel
(r � 3) within a distance 5 of vt (ω) or to isolate the contact(s) associated with vt (ω) so that

3 For the details, see http//math.usask.ca/∼soteros
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lemma 6 can be applied to remove the contact(s). If an r-tunnel is created then two polygons,
ω1 and ω2, can be obtained as in the tunnel reduction process described for lemma 4. The
proof requires a detailed case analysis4 dependent on the configuration of the polygon near
vt (ω). �

Lemma 8. There exists an integer M̃ > 0 such that given any tunnel-reduced polygon ω with n

edges and k contacts, there exist non-negative integers m > 0, b > 0, j ′, m1 � 4, . . . , mb � 4,
j1, . . . , jb, and r1 � j1, r2 < j2, . . . , rb < jb with n − M̃2k �

∑b
i=1 mi = m,

2(b − 1) �
∑b

i=1 ji = j ′,
∑b

i=1 ri = b − 1, m + 6(b − 1) � n, j ′ + b − 1 � k, and an
algorithm for constructing from ω a b-tuple ((ω̃1, E1), . . . , (ω̃b, Eb)) where ω̃i is a polygon
with mi edges and 0 contacts; E1 is a j1-tuple, (E1j , j = 1, . . . , j1), of distinct vertices from
the square lattice with E1j > E1j ′ for any j < j ′ and with r1 of the vertices distinguished; Ei

(i > 1) is a ji-tuple, (Eij , j = 1, . . . , ji), of distinct vertices from the square lattice with one
vertex designated as a root vertex, with Eij > Eij ′ for any j < j ′, and with ri of the non-root
vertices distinguished. Furthermore, the (ω̃i , Ei) satisfy the following.

(1) Each vertex in Ei is either within a distance M̃ from another vertex which comes after it
in Ei or within distance M̃/2 from a vertex of ω̃i .

(2) The last vertex in Ei is within a distance M̃/2 of a vertex of ω̃i .
(3) For k � 1, construct a graph 0 as follows. Translate (ω̃1, E1) so that E11 coincides with

the top vertex of the top contact of ω. Add the translated ω̃1 to 0. For i = 2, . . . , r1 + 1,
translate (ω̃i, Ei ) so that the root vertex of Ei coincides with the (i − 1)th distinguished
vertex of the previously translated E1 and add the translated ω̃i to 0. Then for each
j = 2, . . . , b, and for i = r1 + · · · + rj−1 + 2, . . . , r1 + · · · + rj + 1, translate (ω̃i, Ei ) so

that the root vertex of Ei coincides with the (i − 1 −∑j−1
l=1 rl)th distinguished vertex of the

previously translated Ej−1 and add the translated ω̃i to 0. The resulting graph 0 differs
from ω only within j ′ − b + 1 boxes of size M̃ × M̃ centred around the vertices specified
by the translated Eis.

Proof. Consider a tunnel-reduced polygon ω with n edges and k contacts. For k = 0, set
b = 1, m = n, j ′ = j1 = 0, ω̃1 = ω and E1 = φ. Otherwise, given a fixed k � 1, the goal is
to remove all k contacts from this polygon and create the required b-tuple where the ω̃is have
no contacts.

The following is a description of the required algorithm for forming the b-tuple from ω.
Initially, let the label set L = φ. Starting at the top contact of ω we apply lemma 7 with
2M1 = 2M2 = M̃ ≡ 72. There are two possibilities, either (1) we obtain a tunnel-reduced
polygon ω̃ which has k′ � k − 1 contacts or (2) we obtain two tunnel-reduced polygons ω1

and ω2 with vt (ω2) < vt (ω1) < vt (ω) and with k1 and k2 contacts, respectively, and m1 and
m2 edges respectively such that k1 + k2 � k − 3 and m1 + m2 � n − 6. In the first case we let
vt (ω) be the first component of E1, add 1 to the label set L, and temporarily set ω̃1 = ω̃. In the
second case we let vt (ω) be the first component of both E1 and E2, distinguish vt (ω) in E1 and
make it the root vertex in E2, add 1 and 2 to the label set L, and temporarily set ω̃1 = ω1 and
ω̃2 = ω2. In this case, it is said that the distinguished vertex in E1 leads to the root vertex of ω̃2

or (equivalently) leads to ω̃2 and it is said that (ω̃2, E2) is a child of (ω̃1, E1). Note that in both
cases, for each i ∈ L the single component of Ei is within a distance M̃/2 of a vertex of ω̃i so
that properties (1) and (2) of the statement of this lemma are satisfied. Also ((ω̃i, Ei ), i ∈ L)

satisfies property (3) of the statement of this lemma.

4 The full details are provided at http//math.usask.ca/∼soteros
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Assume an i ′-tuple ((ω̃1, E1), . . . , (ω̃i ′ , Ei ′)) has been created with ω̃i an mi-edge, ki-
contact, tunnel-reduced polygon with:

∑i ′
i=1 ki � k − 3(i ′ − 1) and n − M̃2(k − ∑i ′

i=1 ki) �∑i ′
i=1 mi � n − 6(i ′ − 1); Ei a ji-tuple of vertices of Z2 with 2(i ′ − 1) �

∑i ′
i=1 ji = j ′ �

k−(i ′−1)−∑i ′
i=1 ki and for i > 1, one vertex designated as a root and for all i, ri distinguished

non-root vertices with
∑i ′

i=1 ri = i ′ − 1; and such that properties (1)–(3) of the statement of
this lemma are satisfied. Let L = {1, 2, . . . , i ′}. Using the terminology introduced above,
property (3) implies that for j = 2, . . . , i ′ and for i = 2 +

∑j−1
l=1 rl, . . . , 1 +

∑j

l=1 rl , the
(i − 1 − ∑j−1

l=1 rl)th distinguished vertex of Ej−1 leads to ω̃i and that (ω̃i, Ei ) is a child of
(ω̃j−1, Ej−1).

If for each i ∈ L, ω̃i has 0 contacts then set b = i ′ and stop because
((ω̃1, E1), . . . , (ω̃i ′ , Ei ′)) is the required b-tuple. Otherwise let i be the smallest number in
L such that ω̃i has at least one contact. Proceed to the top contact of ω̃i and apply lemma 7. If
case (1) of the lemma applies, then add ṽ ≡ vt (ω̃i) to the end of Ei and redefine ω̃i to be the
polygon ω̃ which results from the application of the lemma. If case (2) of the lemma applies,
then consider the two polygons ω1 and ω2 which result from the application of the lemma.
Each existing component of Ei is either within a distance M̃ from a later component of Ei or
within a distance M̃/2 of a vertex of ω̃i . Thus each vertex vi

l = Eil in Ei must be contained in
a 2M̃ ×2M̃ box centred at a vertex vi

l′ = Eil′ , l′ > l of Ei or contained in a M̃ × M̃ box centred
at a vertex of ω̃i . Each Ei of this kind gives a unique set of planted plane trees, t i1, . . . , t

i
si

(si � ji), in the following way: if vi
l is within a distance M̃ of some vi

l′ (l′ > l), then join vi
l

by an edge to vi
l′ for the smallest such l′; otherwise (i.e. if there is no l′ > l such that vi

l is
within a distance M̃ of vi

l′ ) join vi
l by an edge to the closest vertex of ω̃i (in case of ambiguity,

choose the last vertex in a lexicographic ordering of the closest vertices). In the formation of
this graph the vertices maintain their positions within the plane. (Note that if vi

l is not within
a distance M̃ of some vi

l′ (l′ > l) and if vi
l is itself a vertex of ω̃i , then the vertex vi

l is repeated
in the graph but the duplicate vertex is placed in the plane in the location vi

l + (u1 + u2)/2 and
the two vertices are joined by an edge in the graph.) The resulting graph has no cycles (since
all edges go from vi

l to vi
l′ for l < l′ or from vi

l to a vertex of ω̃i) with up to ji connected
components all of which are plane trees. Each component ends at exactly one vertex of ω̃i

and each of these vertices has degree one (to see that this latter statement holds, suppose that
a vertex v of ω̃i has degree greater than one in the component t , then there are two vertices,
vi
l and vi

l′ for l < l′, each within a distance M̃/2 of v, however, this means that vi
l is within

a distance M̃ of vi
l′ and thus would have been joined by an edge to vi

l′ and not to v in t). The
vertices of ω̃i associated with each component are distinct and are denoted ρi

1 > · · · > ρi
si

;
the component which contains ρi

l is planted at ρi
l and the resulting planted plane tree is called

t il . A vertex in Ei is said to be associated with the vertex ρi
l of ω̃i if the vertex is on the planted

plane tree t il . If ρi
l is a vertex of ω1 (ω2) then all the vertices of Ei which are associated with

ρi
l will also be considered to be associated with ω1 (ω2). If ρi

l is not a vertex of either ω1

or ω2, then it must be within a distance M̃ of vt (ω̃i) in which case it is said to be associated
with the polygon ω1. For i > 1 (i = 1), redefine ω̃i to be the polygon ω1 or ω2 with which
the root vertex of Ei (the first component of E1, E11) is associated and define ω̃i ′+1 to be the
other polygon. Define Ei ′+1 to be the subsequence of vertices of Ei associated with ω̃i ′+1 and
add ṽ to the end of Ei ′+1 as the root vertex of ω̃i ′+1. Redefine Ei to be the subsequence of
vertices of Ei associated with the new ω̃i and add ṽ to the end of Ei as a distinguished vertex
which leads to ω̃i ′+1. Then mi, ki, ji, ri, mi ′+1, ki ′+1, ji ′+1, ri ′+1 are adjusted appropriately with
now n − M̃2(k − ∑i ′+1

i=1 ki) �
∑i ′+1

i=1 mi = m � n − 6i ′,
∑i ′+1

i=1 ki � k − i ′ − ∑i ′+1
i=1 ki and

2i ′ �
∑i ′+1

i=1 ji = j ′ � k − 2i ′. In order to ensure that property (3) holds, it is necessary next
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to relabel the 2-tuples (ω̃l, El) for l = 1, . . . , i ′ + 1. This is done in a breadth-first fashion
starting with the children of (ω̃1, E1) and relabelling them with the numbers 2, . . . , r1 + 1 in
the order prescribed by the order of the distinguished vertices of E1 which lead to them. Then
for each j = 2, . . . , i ′ + 1, the children of the new (ω̃j , Ej ) are relabelled with the numbers
r1 + · · · + rj−1 + 2, . . . , r1 + · · · + rj + 1 in the order prescribed by the order of the distinguished
vertices of Ej which lead to them. Add i ′ + 1 to L. If, for each i ∈ L, ω̃i has 0 contacts then set
b = i ′ + 1 and then ((ω̃1, E1), . . . , (ω̃i ′+1, Ei ′+1)) is the required b-tuple; otherwise the process
is repeated at most k times until the required b-tuple is obtained. �

Lemma 9. For tunnel-reduced polygons in Z2, for some constant C > 1

p̃n(k) � Ck

(
2n

k

)
pn(0). (2.49)

Proof. For k � 1, by the construction of lemma 8 each tunnel-reduced polygon with k contacts
yields a b-tuple, for some b > 0, ((ω̃1, E1), . . . , (ω̃b, Eb)) which depends on the index set of
non-negative integers S = {m, j ′, b,m1, . . . , mb, j1, . . . , jb, r1, . . . , rb−1}. To obtain an upper
bound on p̃n(k) we note that

p̃n(k) �
n∑

m=n−M̃2k

k∑
j ′=0

bmax∑
b=1

∑
{mi }

∑
{ji }

∑
{ri }

D1(n, k, S)D2(n, k, S) (2.50)

whereD1(n, k, S) is the maximum number of possible precursor n edge and k contact polygons
of a b-tuple with index set S via the algorithm described in the proof of lemma 8; D2(n, k, S) is,
for fixed n and k, the number of distinct b-tuples which result from the algorithm of lemma 8;
and where

∑
{mi } denotes the sum over {mi � 4, 1 � i � b| ∑b

i=1 mi = m}, ∑
{ji } denotes

the sum over {j1 � 0, ji > 0, 2 � i � b| ∑b
i=1 ji = j ′}, ∑

{ri } denotes the sum over

{ri � 0, 1 � i � b| ∑b
i=1 ri = b − 1}, and bmax = min{ n−m

6 + 1, k − j ′ + 1, j ′
2 + 1, m

4 }. In
fact, we calculate upper bounds N1(k) � D1(n, k, S) and N2(n, k) �

∑
S D2(n, k, S).

Since the vertices specified by the Eis determine the centres of 1+
∑b

i=1(ji −1) = j ′−b+1
boxes in which changes to ω were made, an upper bound on the number of precursors to any
b-tuple is thus given by N1(j

′ − b + 1) ≡ (22M̃(M̃+1))j
′−b+1 � N1(k), the number of ways to

add or delete edges within each of the j ′ − b + 1 boxes.
Given ω̃i , then, as discussed in the proof of lemma 8, there is a one-to-one correspondence

between Ei and a sequence of planted plane trees (with non-plant vertices in Z2), t i1, . . . , t
i
si

(si � ji) such that each plant vertex is associated with a unique vertex of ω̃i denoted,
respectively, ρi

1 > · · · > ρi
si

. Since the children of any non-plant vertex v of t il (for some

l) are vertices of Ei which are lexicographically larger than v and within a distance M̃ from v,
thus the maximum number of children of a non-plant vertex of t il is V ≡ 2M̃(M̃ + 1). The
maximum number of choices for the child of the plant vertex is bounded above by (M̃+1)2 < V .
Thus, given ω̃i and ji , an upper bound on the number of ways to form Ei is given by the number
of ways to do the following: (1) choose si � ji vertices of the polygon ω̃i to be the plants for si
planted plane trees, and then (2) choose a sequence of si abstract planted plane trees, t i1, . . . , t

i
si

,
using a total of ji non-plant vertices, and (3) starting with ρi

1 and using the tree t i1, choose a
vertex ui

1,1 on the lattice within a distance M̃/2 of ρi
1 to correspond to the child of the plant

in t i1, choose vertices ui
2,1, . . . , u

i

2,ci1
on the lattice within a distance M̃ of ui

1,1 to correspond

to the ci1 children of ui
1,1 in t i1, . . . , and similarly choose vertices on the lattice according to
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the remaining ρi
l s and t il s, and (4) order the chosen vertices in decreasing lexicographic order

(according to their coordinates). Let Pl be the number of abstract planted plane trees with l

non-plant vertices, then (see, for example, [17])

Pl1Pl2 � Pl1+l2−1 (2.51)

and for l > 1

Pl =
(

2l − 2

l − 1

)
1

l
(2.52)

and hence

Pl � 4l−1. (2.53)

Thus a bound on the number of ways to choose the vertices in Ei is(
V

1

)ji ji∑
si=1

(
mi

si

)∑′
Pe1 · · ·Pesi

� (V )jiPji

ji∑
si=1

(
mi

si

)(
ji − 1

si − 1

)

= (V )jiPji

ji∑
si=1

(
mi

si

)(
ji − 1

ji − si

)

= (V )jiPji

(
mi + ji − 1

ji

)

� (16M̃2)ji
(
mi + ji − 1

ji

)
(2.54)

where the primed sum is over {el � 1, 1 � l � si |
∑

l el = ji}. The number of ways to choose
ω̃i is pmi

(0) so that

Ui(mi, ji) = (16M̃2)ji pmi
(0)

(
mi + ji − 1

ji

)
(2.55)

is an upper bound on the number of possible pairs (ω̃i, Ei ) with mi and ji fixed but no vertices
of Ei have been designated as a root or distinguished vertex.

The above argument gives an upper bound on the number of ways to choose the coordinates
of the vertices of Ei relative to the coordinates of ω̃i . Next, by obtaining an upper bound on the
number of ways to choose the root and distinguished vertices of Ei for i = 1, . . . , b, an upper
bound on the number of ways to position the ω̃is relative to ω̃1 and hence relative to each other
is obtained. Given the Eis, note that the number of ways to choose the root and distinguished
vertices of Ei is given by

(
ji
1

)(
ji−1
ri

)
for i � 2 and is given by

(
ji
ri

)
for i = 1. Thus we obtain

the following upper bound on the number of distinct b-tuples ((ω̃i, Ei ), i = 1, . . . , b) with
parameter set S which could result from the algorithm of lemma 8,

D2(n, k, S) �
(
j1

r1

) b∏
i=1

Ui(mi, ji)

[
b∏

i=2

(
ji

1

)(
ji − 1

ri

)]

=
(
j1

r1

)
(16M̃2)j

′
b∏

i=1

pmi
(0)

b∏
i=1

(
mi + ji − 1

ji

) b∏
i=2

(
ji

1

)(
ji − 1

ri

)
(2.56)
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and thus

∑
S

D2(n, k, S) �
∑
S

pm(0)(16M̃2)j
′
(
j1

r1

) b∏
i=1

(
mi + ji − 1

ji

) b∏
i=2

(
ji

1

)(
ji − 1

ri

)

�
∑
m

pm(0)
∑
j ′

(16M̃2)j
′ ∑

b

∑
{mi }

∑
{ji }

b∏
i=1

(
mi + ji − 1

ji

)

×
∑
{ri }

(
j1

r1

) b∏
i=2

(
ji

1

)(
ji − 1

ri

)

�
∑
m

pm(0)
∑
j ′

(16M̃2)j
′ ∑

b

(
j ′ − b + 1

b − 1

) ∑
{mi }

∑
{ji }

b∏
i=1

(
mi + ji − 1

ji

) b∏
i=2

(
ji

1

)

�
∑
m

pm(0)
∑
j ′

(16M̃2)j
′ ∑

b

(
j ′ − b + 1

b − 1

)(
j ′

b

) ∑
{mi }

∑
{ji }

b∏
i=1

(
mi + ji − 1

ji

)

�
∑
m

pm(0)
∑
j ′

(16M̃2)j
′ ∑

b

(
j ′ − b + 1

b − 1

)(
j ′

b

) ∑
{mi }

(
m + j ′ − b

j ′

)

�
∑
m

pm(0)
∑
j ′

(16M̃2)j
′ ∑

b

(
j ′ − b + 1

b − 1

)(
j ′

b

)(
m + j ′ − b

j ′

)(
m − 1

b − 1

)

�
∑
m

pm(0)
∑
j ′

(64M̃2)j
′ ∑

b

(
m + j ′ − b

j ′

)(
m − 1

b − 1

)

� pn(0)(64M̃2)k
∑
m

∑
j ′

∑
b

(
m + j ′ − b

j ′

)(
m − 1

b − 1

)

� pn(0)(64M̃2)k
∑
m

∑
j ′

∑
b

(
n + k − 1

j ′

)(
n − 1

b − 1

)

� pn(0)(64M̃2)k
∑
m

∑
j ′

∑
b

(
n + k − 1

j ′

)(
n − 1

k − j ′

)

� pn(0)(64M̃2)k
∑
m

∑
b

(
2n + k − 2

k

)

� pn(0)(64M̃2)k(M̃2k + 1)(k + 1)

(
2n + k − 2

k

)

= pn(0)(64M̃2)k(M̃2k + 1)(k + 1)
k∑

s=0

(
2n − 2

s

)(
k

k − s

)

� pn(0)(64M̃2)k(M̃2k + 1)(k + 1)2k

(
2n − 2

k

)

� pn(0)(512M̃2)k
(

2n − 2

k

)
M̃2 � pn(0)(2

11M̃4)k
(

2n

k

)
≡ N2(n, k). (2.57)
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Putting all the bounds together gives

p̃n(k) � N1(k)N2(n, k) = (211+2M̃(M̃+1)M̃4)k
(

2n

k

)
pn(0). (2.58)

Thus we have the required result provided C � 211+2M̃(M̃+1)M̃4. �

Lemma 10. For polygons in Z2, for some constant C ′ > 1

pn(k) � (C ′)k
(

6n

k

)
pn(0). (2.59)

Proof. Applying lemmas 3, 5 and 9 yields

pn(k) � (64λ)k
k∑

k′=0

(
2n

k − k′

)
p̂n(k

′)

� (64λ)k
k∑

k′=0

(
2n

k − k′

)
(256)k

′
k′∑

j ′=0

(
2n

k′ − j ′

)
p̃n(j

′)

� (64λ)k
k∑

k′=0

(
2n

k − k′

)
(256)k

′
k′∑

j ′=0

(
2n

k′ − j ′

)
Cj ′

(
2n

j ′

)
pn(0)

� (218Cλ)kpn(0)
k∑

k′=0

(
2n

k − k′

) k′∑
j ′=0

(
2n

k′ − j ′

)(
2n

j ′

)

= (218Cλ)k
(

6n

k

)
pn(0) (2.60)

which gives the required result for C ′ � 229+2M̃(M̃+1)M̃4λ. �

We next prove a slightly weakened version of (b) for polygons in Z2.

Theorem 5. For polygons in Z2, for fixed k there are constants B1, B2 > 0 independent of n
and a positive integer N such that for n > N

B1n
kpn(0) � pn(k) � B2n

kpn(0). (2.61)

Proof. This follows immediately from corollary 1 and lemma 10. �

3. Properties of the free energy

Let Z0
n(β) = ∑

k pn(k)eβk . The limit in equation (1.3) has been proved to exist [2, 3]. We
now prove a corollary on the behaviour of F0(β) as β → −∞.

Corollary 3. For polygons in Z2, for some constants C > 0 and ε > 0

κ0 + ε log(1 + eβ) � F0(β) � κ0 + 6 log(1 + Ceβ). (3.1)

Hence F0(β) is strictly greater than but asymptotic to κ0 as β → −∞.
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Proof. From corollary 1 and lemma 10 with C = C ′ we have the inequalities

∑
k

(�εn�
k

)
pn(0)e

βk � Z0
n(β) �

∑
k

(
6n

k

)
Ckpn(0)e

βk. (3.2)

Hence

pn(0)(1 + eβ)�εn� � Z0
n(β) � pn(0)(1 + Ceβ)6n (3.3)

and the result follows by taking logarithms, dividing by n, and letting n → ∞. �

The next corollary proves the analogue of (c) for polygons in Z2 with 0 < a < 1. This
corollary implies 0 < limn→∞ 〈k〉n/n < 1, provided the limit exists.

Corollary 4. If the free energy F0(β) is differentiable at β = 0 then

0 < lim
n→∞ 〈k〉n/n < 1. (3.4)

Otherwise

0 < lim
β→0−

F ′
0(β) � lim inf

n→∞ 〈k〉n/n < lim sup
n→∞

〈k〉n/n � lim
β→0+

F ′
0(β) < 1. (3.5)

Proof. Note that

lim
n→∞ 〈k〉n/n = lim

n→∞ n−1 ∂ logZ0
n(β)

∂β

∣∣∣∣
β=0

. (3.6)

F0(β) is a convex, monotonically increasing function of β asymptotic to and bounded below
by a line with slope one as β goes to infinity [2, 3]. This together with corollary 3 shows
that F0(β) is strictly monotonically increasing so the derivative, if it exists, at β = 0 must be
positive and less than one. Since F0(β) is convex, if the derivative at β = 0 exists, the order
of the limit and derivative can be reversed in equation (3.6), so that limn→∞〈k〉/n = F ′

0(0).
Suppose that F0(β) is not differentiable at β = 0. Convexity implies that there exists an
interval (0, α) such that F0(β) is differentiable inside this interval. Define

fn(β) = n−1 logZ0
n(β). (3.7)

Let β ∈ (0, α). Convexity of fn(β) implies that

f ′
n(0) � f ′

n(β) (3.8)

so that

lim sup
n→∞

f ′
n(0) � lim

n→∞ f ′
n(β) = F ′

0(β) (3.9)

and hence

lim sup
n→∞

f ′
n(0) � lim

β→0+
F ′

0(β). (3.10)

Similarly, there exists γ > 0 such that F0(β) is differentiable for all β ∈ (−γ, 0) so that

lim
β→0−

F ′
0(β) � lim inf

n→∞ f ′
n(0). (3.11)

This completes the proof. �
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4. Polygons with a density of contacts

In this section we consider polygons with a fixed density of contacts. We show that the number
of such polygons grows exponentially and investigate the dependence of the exponential growth
rate on the density of contacts. We first note that all except exponentially few polygons have a
positive density of contacts confirming the observation of Douglas and Ishinabe [5] and Douglas
et al [6]. This follows immediately from the pattern theorem for self-avoiding polygons [18]
by taking the K-pattern W = u1u2ū1. Our general approach is similar to that used by Madras
et al [19] in the study of lattice animals with fixed cyclomatic index.

Let qn(α) = pn(�αn�).
Lemma 11. The connective constant κ(α) defined by

lim
n→∞ n−1 log qn(α) ≡ κ(α) (4.1)

exists.

Proof. Any polygon with n1 edges and k1 contacts can be concatenated with any polygon with
n2 edges and k2 contacts to create a polygon with n1 + n2 edges and k1 + k2 + 2 contacts. This
implies the inequality

pn1(k1)pn2(k2)

d − 1
� pn1+n2(k1 + k2 + 2) (4.2)

where the factor of d − 1 accounts for rotations [7]. Setting k1 = �αn1� and k2 = �αn2�, we
obtain the generalized supermultiplicative inequality

qn1(α)qn2(α)

d − 1
� qn1+n2(α + f (α, n1, n2)) (4.3)

where 0 � f (α, n1, n2) � 3
n1+n2

so that limn1+n2→∞ f (α, n1, n2) = 0.
Since qn(α) � pn it is exponentially bounded and the existence of the limit then follows

from standard subadditivity arguments [8–10]. �

Lemma 12. κ(α) is a concave function of α.

Proof. Setting k1 = �α1n� and k2 = �α2n� in equation (4.2), we obtain

qn(α1)qn(α2)

d − 1
� q2n

(α1 + α2

2
+ f

(α1 + α2

2
, n, n

))
(4.4)

where the function f is as in lemma 11. Taking logarithms, dividing by 2n, and letting n go
to infinity gives

κ(α1) + κ(α2)

2
� κ

(α1 + α2

2

)
. (4.5)

�

Lemma 13. For d = 2,

lim
α→0+

κ(α) = κ0. (4.6)

For d � 3

lim
α→0+

κ(α) � κ0. (4.7)
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Proof. For d = 2, from lemma 10 and lemma 2.4 of Madras et al [19]

lim
n→∞ n−1 log qn(α) � α logC ′ + 6 log 6 − α logα − (6 − α) log(6 − α) + κ0. (4.8)

For all d, from corollary 1 for any α < ε

lim
n→∞ n−1 log qn(α) � ε log ε − α logα − (ε − α) log(ε − α) + κ0. (4.9)

Hence, letting α → 0+ in equations (4.8) and (4.9), for d = 2 we obtain continuity at α = 0
(i.e. equation (4.6)). Letting α → 0+ in equation (4.9), we obtain equation (4.7). �

Theorem 6. For d = 2,

(a) lim
α→0+

dκ(α)

dα
= ∞. (4.10)

For all d

(b) max
α

κ(α) = κ. (4.11)

Proof.

(a) The right derivative of κ(α) exists by concavity. Differentiating equation (4.9) then shows
that the right derivative must be infinite.

(b) Define α∗
n = min{α|qn(α) � qn(β),∀β}. Then

qn(α
∗
n) � pn =

∫ d−1

0
qn(α) dα � (d − 1)qn(α

∗
n) (4.12)

so that

κ = lim
n→∞ n−1 log qn(α

∗
n) (4.13)

and since

max
α

κ(α) = lim
n→∞ n−1 log qn(α

∗
n) (4.14)

(b) follows.

�

Corollary 5. For d = 2,

lim
n→∞;k=o(n)

n−1 logpn(k) = κ0. (4.15)

5. Conclusions

With regard to the conjectures for self-avoiding walks with a fixed number of contacts, made
by Douglas et al [5, 6], we have proved (a) for self-avoiding walks and polygons in Zd and
somewhat weakened versions of (b) and (c) for polygons in Z2. We also investigated the form
of the connective constant, κ(α), for polygons with a density, α, of contacts. We showed that
the connective constant exists, is a concave function ofα, and is equal to the connective constant
of self-avoiding walks for some value of α. For d = 2, we showed that limα→0+ κ(α) = κ0

and that κ(α) has infinite derivative at α = 0.
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